如图,AB是⊙O的弦,D是半径OA的中点,过D作CD⊥OA交弦AB于点E,交⊙O于F,且CE=CB.(1)求证:BC是⊙O的切线;(2)连接AF、BF,求∠ABF的度数;(3)如果CD=15,BE=10,sin A=,求⊙O的半径.
如图,为正方形对角线AC上一点,以为圆心,长为半径的⊙与相切于点.求证:与⊙相切;若⊙的半径为1,求正方形的边长.
列方程解应用题: 随着人们节能意识的增强,节能产品的销售量逐年增加.某地区高效节能灯的年销售量2009年为10万只,预计2011年将达到14.4万只.求该地区2009年到2011年高效节能灯年销售量的平均增长率.
如图,正方形中,点F在边BC上,E在边BA的延长线上.若按顺时针方向旋转后恰好与重合.则旋转中心是点; 最少旋转了度;在(1)的条件下,若,求四边形的面积.
如图,在中,AB是的直径,与AC交于点D,, 求的度数;
某射击运动员在相同条件下的射击160次,其成绩记录如下:根据上表中的信息将两个空格的数据补全(射中9环以上的次数为整数,频率精确到0.01);根据频率的稳定性,估计这名运动员射击一次时“射中9环以上”的概率(精确到0.1), 并简述理由.