已知圆C:内有一点P(2,2),过点P作直线交圆C于A、B两点。(1)当经过圆心C时,求直线的方程;(2)当弦AB的长为时,写出直线的方程。
已知在平面直角坐标系中,向量,且.(1)设的取值范围; (2)设以原点O为中心,对称轴在坐标轴上,以F为右焦点的椭圆经过点M,且取最小值时,求椭圆的方程.
已知双曲线,P是其右支上任一点,F1、F2分别是双曲线的左、右焦点,Q是P F1上的点,N是F2Q上的一点。且有 求Q点的轨迹方程。
在直角坐标平面内,已知点,是平面内一动点,直线、斜率之积为. (Ⅰ)求动点的轨迹的方程; (Ⅱ)过点作直线与轨迹交于两点,线段的中点为,求直线的斜率的取值范围.
已知椭圆C过点是椭圆的左焦点,P、Q是椭圆C上的两个动点,且|PF|、|MF|、|QF|成等差数列。 (1)求椭圆C的标准方程; (2)求证:线段PQ的垂直平分线经过一个定点A; (3)设点A关于原点O的对称点是B,求|PB|的最小值及相应点P的坐标。
在直角坐标系 x O y 中,椭圆 C 1 : x 2 a 2 + y 2 b 2 = 1 a > b > 0 的左、右焦点分别为 F 1 , F 2 . F 2 也是抛物线 C 2 : y 2 = 4 x 的焦点,点 M 为 C 1 与 C 2 在第一象限的交点,且 M F 2 = 5 3 . (Ⅰ)求 C 1 的方程; (Ⅱ)平面上的点 N 满足 M N ⇀ = M F 1 ⇀ + M F 2 ⇀ ,直线 l ∥ M N ,且与 C 1 交于 A , B 两点,若 O A ⇀ · O B ⇀ = 0 ,求直线 l 的方程.