解方程(组):(1)(2)
已知函数(1)求的最小正周期;(2)若,求的最大值,最小值.
.设函数(Ⅰ)若函数在定义域上为增函数,求的取值范围;(Ⅱ)求函数的极值点;(Ⅲ)证明:不等式恒成立.
.已知中心在原点O,焦点在轴上,离心率为的椭圆;以椭圆的顶点为顶点构成的四边形的面积为4.(Ⅰ)求椭圆的标准方程;(Ⅱ)若A\B分别是椭圆长轴的左.右端点,动点M满足,直线MA交椭圆于P,求的取值范围.
.如图,边长为2的正方形ABCD,E是BC的中点,沿AE,DE将折起,使得B\C重合于O.(Ⅰ)设Q为AE的中点,证明:QDAO;.(Ⅱ)求二面角O—AE—D的余弦值.
一个盒子中装有大小相同的小球个,在小球上分别标有1,2,3,,的号码,已知从盒子中随机的取出两个球,两球的号码最大值为的概率为,(Ⅰ)问:盒子中装有几个小球?(Ⅱ)现从盒子中随机的取出4个球,记所取4个球的号码中,连续自然数的个数的最大值为随机变量(如取2468时,=1;取1246时,=2,取1235时,=3),(ⅰ)求的值;(ⅱ)求随机变量的分布列及均值.