已知极坐标系的极点在直角坐标系的原点,极轴与x轴的正半轴重合.已知直线的参数方程为,曲线的极坐标方程为.(1)曲线的直角坐标方程;(2)设直线与曲线相交于A,B两点,当变化时,求的最小值。
已知函数,.(1)若直线是函数的图像的一条对称轴,求的值;(2)若,求的值域.
已知函数().(Ⅰ)当时,求函数的图象在点处的切线方程;(Ⅱ)当时,记函数,试求的单调递减区间; (Ⅲ)设函数(其中为常数),若函数在区间上不存在极值,求的最大值.
已知抛物线的焦点为,抛物线上存在一点到焦点的距离为,且点在圆上.(Ⅰ)求抛物线的方程;(Ⅱ)已知椭圆的一个焦点与抛物线的焦点重合,且离心率为.直线交椭圆于、两个不同的点,若原点在以线段为直径的圆的外部,求的取值范围.
如图,在正四棱台中,,,,、分别是、的中点. (Ⅰ)求证:平面∥平面;(Ⅱ)求证:平面.注:底面为正方形,从顶点向底面作垂线,垂足是底面中心,这样的四棱锥叫做正四棱锥.用一个平行于正四棱锥底面的平面去截该棱锥,底面与截面之间的部分叫做正四棱台.
已知向量,,实数为大于零的常数,函数,,且函数的最大值为.(Ⅰ)求的值;(Ⅱ)在中,分别为内角所对的边,若,,且,,求的值.