如图,四棱锥E—ABCD中,ABCD是矩形,平面EAB平面ABCD,AE=EB=BC=2,F为CE上的点,且BF平面AC E.(1)求证:AEBE;(2)求三棱锥D—AEC的体积;(3)求二面角A—CD—E的余弦值.
如图,α⊥β,α∩β=l, A∈α, B∈β,点A在直线l上的射影为A1, 点B在l的射影为B1,已知AB=2,AA1=1, BB1=, 求:(Ⅰ) 直线AB分别与平面α,β所成角的大小; (Ⅱ)二面角A1-AB-B1的余弦值.
(本小题满分12分)甲有一个装有个红球、个黑球的箱子,乙有一个装有个红球、个黑球的箱子,两人各自从自己的箱子里任取一球,并约定:所取两球同色时甲胜,异色时乙胜(,,,).(Ⅰ)当,时,求甲获胜的概率;(Ⅱ)当,时,规定:甲取红球获胜得3分;取黑球获胜得1分;甲负得0分.求甲的得分期望达到最大时的,值;(Ⅲ)当时,这个游戏规则公平吗?请说明理由.
(本小题满分12分) 已知向量,,.(1)若求向量,的夹角;(2)当时,求函数的最大值。
(本小题满分14分)已知函数.(Ⅰ)当时,求曲线在处的切线方程;(Ⅱ)求函数在区间上的最小值;(Ⅲ)若关于的方程在区间内有两个不相等的实数根,求实数a的取值范围.
(本小题满分14分)数列的各项均为正数,为其前项和,对于任意,总有成等差数列.(Ⅰ)求数列的通项公式;(Ⅱ)设数列的前项和为 ,且,求证:对任意实数(是常数,=2.71828)和任意正整数,总有 2;(Ⅲ) 已知正数数列中,.,求数列中的最大项.