如图,在平面直角坐标系中,已知抛物线交轴于两点,交轴于点.(1)求此抛物线的解析式;(2)若此抛物线的对称轴与直线交于点D,作⊙D与x轴相切,⊙D交轴于点E、F两点,求劣弧 的长;(3)P为此抛物线在第二象限图像上的一点,PG垂直于轴,垂足为点G,试确定P点的位置,使得△PGA的面积被直线AC分为1︰2两部分.
如图,抛物线F:的顶点为P,抛物线:与y轴交于点A,与直线OP交于点B.过点P作PD⊥x轴于点D,平移抛物线F使其经过点A、D得到抛物线F′:,抛物线F′与x轴的另一个交点为C. ⑴当a = 1,b=-2,c = 3时,求点C的坐标(直接写出答案); ⑵若a、b、c满足了 ①求b:b′的值; ②探究四边形OABC的形状,并说明理由.
如图15,在△ABC和△PQD中,AC =" k" BC,DP =" k" DQ,∠C =∠PDQ,D、E分别是AB、AC的中点,点P在直线BC上,连结EQ交PC于点H.猜想线段EH与AC的数量关系,并证明你的猜想.
如图14,矩形ABCD中,AB = 6cm,AD = 3cm,点E在边DC上,且DE = 4cm.动点P从点A开始沿着A→B→C→E的路线以2cm/s的速度移动,动点Q从点A开始沿着AE以1cm/s的速度移动,当点Q移动到点E时,点P停止移动.若点P、Q同时从点A同时出发,设点Q移动时间为t (s),P、Q两点运动路线与线段PQ围成的图形面积为S (cm2),求S与t的函数关系式.
A、B两地的路程为16千米,往返于两地的公交车单程运行40分钟.某日甲车比乙车早20分钟从A地出发,到达B地后立即返回,乙车出发20分钟后因故停车10分钟,随后按原速继续行驶,并与返回途中的甲车相遇.图13是乙车距A地的路程y (千米)与所用时间x (分)的函数图象的一部分(假设两车都匀速行驶). ⑴请在图13中画出甲车在这次往返中,距A地的路程y (千米)与时间x (分)的函数图象; ⑵乙车出发多长时间两车相遇?
如图,直线交x轴于点A,交y轴于点B,抛物线的顶点为A,且经过点B. ⑴求该抛物线的解析式; ⑵若点C(m,)在抛物线上,求m的值.