设函数(1)当 ,画出函数的图像,并求出函数的零点;(2)设,且对任意,恒成立,求实数的取值范围.
设二次函数的图象以轴为对称轴,已知,而且若点在的图象上,则点在函数的图象上 (1)求的解析式 (2)设,问是否存在实数,使在内是减函数,在内是增函数。
已知定义在R上的函数是奇函数 (1)求的值; (2)判断的单调性,并用单调性定义证明; (3)若对任意的,不等式恒成立,求实数的取值范围。
已知是定义在上的增函数,且满足,。 (1)求 (2)求不等式的解集
已知:且, (1)求的取值范围; (2)求函数的最大值和最小值。
某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出,当每辆车的月租金每增加50元时,未租出的车将会增加一辆,租出的车每辆每月需维护费150元,未租出的车每辆每月需要维护费50元。 (1)当每辆车的月租金定为3600元时,能租出多少辆车? (2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?