设各项均为正实数的数列的前项和为,且满足().(Ⅰ)求数列的通项公式;(Ⅱ)设数列的通项公式为(),若,,()成等差数列,求和的值;(Ⅲ)证明:存在无穷多个三边成等比数列且互不相似的三角形,其三边长为数列中的三项,,.
在中,角、、所对的边分别为、、,已知,,. (1)求及的面积; (2)求.
已知四棱锥P-ABCD,底面ABCD是的菱形,又,且PD=CD,点M、N分别是棱AD、PC的中点. (Ⅰ)证明:DN//平面PMB; (Ⅱ)证明:平面PMB平面PAD;
解关于x的不等式
如图,菱形的边长为,,.将菱形沿对角线折起,得到三棱锥,点是棱的中点,. (1)求证:面; (2)求点M到平面ABD的距离.
已知各项均为正数的数列的前项和为,且,,成等差数列, (1)求数列的通项公式; (2)若,设,求数列的前项和