已知椭圆过点,且它的离心率.直线与椭圆交于、两点.(Ⅰ)求椭圆的标准方程;(Ⅱ)当时,求证:、两点的横坐标的平方和为定值;(Ⅲ)若直线与圆相切,椭圆上一点满足,求实数的取值范围.
已知抛物线和点,过点P的直线与抛物线交与两点,设点P刚好为弦的中点。(1)求直线的方程(2)若过线段上任一(不含端点)作倾斜角为的直线交抛物线于,类比圆中的相交弦定理,给出你的猜想,若成立,给出证明;若不成立,请说明理由。(3)过P作斜率分别为的直线,交抛物线于,交抛物线于,是否存在使得(2)中的猜想成立,若存在,给出满足的条件。若不存在,请说明理由。
抛物线(p>0)的准线与x轴交于M点,过点M作直线l交抛物线于A、B两点.(1)若线段AB的垂直平分线交x轴于N(x0,0),比较x0与3p大小;(2)若直线l的斜率依次为p,p2,p3,…,线段AB的垂直平分线与x轴的交点依次为N1,N2,N3,…,求++…+的值.
已知的顶点A、B在椭圆,点在直线上,且(1)当AB边通过坐标原点O时,求的面积;(2)当,且斜边AC的长最大时,求AB所在直线的方程。
如图,A,B,C三个观察哨,A在B的正南,两地相距6km,C在B的北偏东60°,两地相距4km.在某一时刻,A观察哨发现某种信号,并知道该信号的传播速度为1km/s;4秒后B,C两个观察哨同时发现这种信号。在以过A,B两点的直线为y轴,以线段AB的垂直平分线为x轴的平面直角坐标系中,指出发了这种信号的地点P的坐标。
在直角坐标系中,点P是曲线C上任意一点,点P到两点,的距离之和等于4,直线与C交于A,B两点.(Ⅰ)写出C的方程;(Ⅱ)若,求k的值。