如图,F1,F2是离心率为的椭圆C:(a>b>0)的左、右焦点,直线:x=-将线段F1F2分成两段,其长度之比为1 : 3.设A,B是椭圆C上的两个动点,线段AB的中垂线与C交于P,Q两点,线段AB的中点M在直线l上.(Ⅰ) 求椭圆C的方程;(Ⅱ) 求的取值范围.
在四面体 A B C D 中, C B = C D , A D ⊥ B D ,且 E , F 分别是 A B , B D 的中点,
求证:
(I)直线 E F ∥ 面 A C D ; (II) 面 E F C ⊥ 面 B C D 。
如图,在平面直角坐标系 x O y 中,以 o x 轴为始边做两个锐角 α , β ,它们的终边分别与单位圆相交于 A , B 两点,已知 A , B 的横坐标分别为 2 10 , 2 5 5 .
(1)求 tan ( α + β ) 的值;
(2)求 α + 2 β 的值.
设椭圆 x 2 a 2 + y 2 b 2 = 1 a > b > 0 的左右焦点分别为 F 1 , F 2 ,离心率 e = 2 2 ,右准线为 l , M , N 是 l 上的两个动点, F 1 M ⇀ · F 2 N ⇀ = 0 。
(Ⅰ)若 F 1 M ⇀ = F 2 N ⇀ = 2 5 ,求 a , b 的值; (Ⅱ)证明:当 M N 取最小值时, F 1 M ⇀ + F 2 N ⇀ 与 F 1 F 2 ⇀ 共线。
如图,平面 A B E F ⊥ 平面 A B C D ,四边形 A B E F 与 A B C D 都是直角梯形, ∠ B A D = ∠ F A B = 90 ° , B C = 1 2 A D , B E = 1 2 A F 。
(Ⅰ)证明: C , D , E , F 四点共面; (Ⅱ)设 A B = B C = B E ,求二面角 A - E D - B 的大小。
设进入某商场的每一位顾客购买甲种商品的概率为 0 . 5 ,购买乙种商品的概率为 0 . 6 ,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的。 (Ⅰ)求进入商场的1位顾客购买甲、乙两种商品中的一种的概率; (Ⅱ)求进入商场的1位顾客至少购买甲、乙两种商品中的一种的概率; (Ⅲ)记表示进入商场的3位顾客中至少购买甲、乙两种商品中的一种的人数,求 ξ 的分布列及期望。