椭圆C的中心在原点O,它的短轴长为,相应的焦点的准线了l与x轴相交于A,|OF1|=2|F1A|.(1)求椭圆的方程;(2)过椭圆C的左焦点作一条与两坐标轴都不垂直的直线l,交椭圆于P、Q两点,若点M在轴上,且使MF2为的一条角平分线,则称点M为椭圆的“左特征点”,求椭圆C的左特征点;(3)根据(2)中的结论,猜测椭圆的“左特征点”的位置.
如图,正方体ABCD-A1B1C1D1的棱长为8cm,M、N、P分别是AB、A1D1、BB1的中点;(1)画出过M、N、P三点的平面与平面A1B1C1D1的交线以及与平面BB1C1C的交线;(2)设过M、N、P三点的平面与B1C1交于点Q,求PQ的长;
在三棱锥A-BCD中,E、F分别是线段AD、BC上的点,满足,AB=CD=3,且AB与CD所成的角为60o,求EF的长.
矩形ABCD(AB≤BC)中,AC=2,沿对角线AC把它折成直二面角B-AC-D后,BD=,求AB、BC的长.
翰林汇
已知数列{an}满足a1=2,对于任意的n∈N,都有an>0,且(n+1)a+anan+1-na=0,又知数列{bn}:b1=2n-1+1 (1)求数列{an}的通项an以及它的前n项和Sn; (2)求数列{bn}的前n项和Tn; (3)猜想Sn和Tn的大小关系,并说明理由.
如图,平行六面体ABCD-A'B'C'D'中,AC=2,BC=AA'=A'C=2,∠ABC=90°,点O是点A'在底面ABCD上的射影,且点O恰好落在AC上. (1)求侧棱AA'与底面ABCD所成角的大小; (2)求侧面A'ADD'底面ABCD所成二面角的正切值; (3)求四棱锥C-A'ADD'的体积.