已知椭圆的中心在原点,焦点在轴的非负半轴上,点到短轴端点的距离是4,椭圆上的点到焦点距离的最大值是6.(1)求椭圆的标准方程和离心率;(2)若为焦点关于直线的对称点,动点满足,问是否存在一个定点,使到点的距离为定值?若存在,求出点的坐标及此定值;若不存在,请说明理由.
如图,在凸四边形中,为定点,,为动点,满足.(1)写出与的关系式;(2)设△BCD和△ABD的面积分别为和,求的最大值.
已知等差数列的前项和为,.(1)求数列的通项公式;(2)设,求数列的前项和
在△ABC中,角所对的边分别为. (1)若,且 ,求的值. (2),求的值.
已知数列……的前项和为.(Ⅰ)计算;(Ⅱ)根据(Ⅰ)所得到的计算结果,猜想的表达式,不必证明.
某文具店购进一批新型文具,若按每件15元的价格销售,每天能卖30件,若售价每提高1元,日销售量减少两件.为了使这批文具每天获得400元以上的销售收入,应该怎样制定这批文具的价格?