已知椭圆C的左、右焦点坐标分别是(-,0),(,0),离心率是.直线y=t与椭圆C交于不同的两点M,N,以线段MN为直径作圆P,圆心为P.(1)求椭圆C的方程;(2)若圆P与x轴相切,求圆心P的坐标;(3)设Q(x,y)是圆P上的动点,当t变化时,求y的最大值.
已知椭圆的中心在原点,焦点在轴上,以两个焦点和短轴的两个端点为顶点的四边形是一个面积为的正方形(记为)(Ⅰ)求椭圆的方程(Ⅱ)设点是直线与轴的交点,过点的直线与椭圆相交于两点,当线段的中点落在正方形内(包括边界)时,求直线斜率的取值范围
为了参加广州亚运会,从四支较强的排球队中选出18人组成女子排球国家队,队员来源人数如下表:
(Ⅰ)从这18名队员中随机选出两名,求两人来自同一队的概率;(Ⅱ)中国女排奋力拼搏,战胜了韩国队获得冠军,若要求选出两位队员代表发言,设其中来自北京队的人数为,求随机变量的分布列及数学期望
如图,四棱锥中,底面为梯形,∥, ,平面,为的中点 (Ⅰ)证明: (Ⅱ)若,求二面角的余弦值
在△ABC中,角所对的边分别为,且∥(Ⅰ)求的值(Ⅱ)求三角函数式的取值范围
已知数列的前项和满足,(Ⅰ)求数列的前三项(Ⅱ)设,求证:数列为等比数列,并指出的通项公式。