某饮料厂为了开发新产品,用种果汁原料和种果汁原料试制新型甲、乙两种饮料共50千克,设甲种饮料需配制千克,两种饮料的成本总额为元.(1)已知甲种饮料成本每千克4元,乙种饮料成本每千克3元,请你写出与之间的函数关系式;(2)若用19千克种果汁原料和17.2千克种果汁原料试制甲、乙两种新型饮料,右表是试验的相关数据;请你列出关于且满足题意的不等式组,求出它的解集,并由此分析如何配制这两种饮料,可使值最小,最小值是多少?
如图,已知△ABC,请用尺规过点A作一条直线,使其将△ABC分成面积相等的两部分.(保留作图痕迹,不写作法)
先化简,再求值:[(x-y)2-(x+y)(x-y)]÷2yx,其中x=3,y=1.5.
(1)计算:(2x2y)(-xy2z)3(3x2) (2)因式分解:-8ax2+16axy-8ay2 (3)因式分解:(x2-3)2-4x2.
解方程: (1)(x-2)2-5=0; (2)2x2-8x+3=0.
如图,在直角坐标系中,抛物线经过点A(0,4),B(1,0),C(5,0),其对称轴与x轴相交于点M. (1)求抛物线的解析式和对称轴; (2)在抛物线的对称轴上是否存在一点P,使△PAB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由; (3)连接AC,在直线AC的下方的抛物线上,是否存在一点N,使△NAC的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由.