如图,一块矩形场地ABCD,现测得边长AB与AD之比为,DE⊥AC于点E,BF⊥AC于点F,连接BE,DF.
现计划在四边形DEBF区域内种植花草.
(本题10分)如图,在平面直角坐标系xOy中,已知正比例函数与一次函数的图像交于点A.(1)求点A的坐标;(2)设轴上一点P(,0),过点P作轴的垂线(垂线位于点A的右侧),分别交和的图像于点B、C,连接OC,若BC=OA,求△OBC的面积.
(本题6分)如图,已知在四边形ABCD中,AB=20cm,BC=15 cm,CD=7 cm,AD=24 cm,∠ABC=90°。猜想∠A与∠C关系并加以证明。
计算(本题5分):(-3)0-+|1-|+.
如图,在边长为10的菱形ABCD中,对角线BD=16,点O是直线BD上的动点,OE⊥AB于E,OF⊥AD于F. (1)对角线AC的长是 ,菱形ABCD的面积是 ; (2)如图1,当点O在对角线BD上运动时,OE+OF的值是否发生变化?请说明理由; (3)如图2,当点O在对角线BD的延长线上时,OE+OF的值是否发生变化?若不变,请说明理由,若变化,请探究OE、OF之间的数量关系,并说明理由.
(本题8分)某工厂现有甲种原料380千克,乙种原料290千克,计划用这两种原料生产A、B两种产品共50件.已知生产一件A产品需要甲种原料9千克,乙种原料3千克,可获利700元;生产一件B产品需要甲种原料4千克,乙种原料10千克,可获利1200元.设生产A、B两种产品总利润为y元,其中A种产品生产件数是x件.(1)写出y与x之间的函数关系式;(2)如何安排A、B两种产品的生产件数,使总利润y有最大值,并求出y的最大值.