设数列的前项和为,满足,,且,,成等差数列.(1)求,的值;(2) 是等比数列(3)证明:对一切正整数,有.
已知曲线的极坐标方程为,以极点为原点,极轴为轴的正半轴建立平 面直角坐标系,设直线的参数方程为(为参数)。 (1)求曲线的直角坐标方程与直线的普通方程; (2)设曲线与直线相交于两点,以为一条边作曲线的内接矩形,求该矩形的面积。
如图,已知和相交于两点,为的直径,直线交于点,点为的中点,连接分别交,于点,连接。 (1)求证:; (2)求证:。
(本小题满分12分)已知. (1)已知函数h(x)=g(x)+ax3的一个极值点为1,求的取值; (2) 求函数在上的最小值; (3)对一切,恒成立,求实数a的取值范围.
已知椭圆C的中心在坐标原点,焦点在x轴上,椭圆右顶点到直线的距离为,离心率 (Ⅰ)求椭圆C的方程; (Ⅱ)已知A为椭圆与y轴负半轴的交点,设直线:,是否存在实数m,使直线与椭圆有两个不同的交点M、N,是∣AM∣=∣AN∣,若存在,求出 m的值;若不存在,请说明理由。
(本小题满分12分)如图,已知⊥平面,,,且是的中点,. (1)求证:平面; (2)求证:平面⊥平面; (3)求此多面体的体积.