设数列的前项和为,满足,,且,,成等差数列.(1)求,的值;(2) 是等比数列(3)证明:对一切正整数,有.
设函数. (Ⅰ)试问函数能否在时取得极值?说明理由; (Ⅱ)若当时,函数与的图像有两个公共点,求c 的取值范围.
若实数满足. 试确定的大小关系.
从椭圆 上一点P向x轴作垂线,垂足恰为左焦点F1,又点A是椭圆与x轴正半轴的交点,点B是椭圆与y轴正半轴的交点,且AB//OP,,求椭圆的方程
设函数=x+ax2+blnx,曲线y=过P(1,0),且在P点处的切斜线率为2. (I)求a,b的值;(II)证明:≤2x-2.
(12)已知点是圆上的动点, (1)求的取值范围; (2)若恒成立,求实数的取值范围。