定义:若数列对任意,满足(为常数),称数列为等差比数列.(1)若数列前项和满足,求的通项公式,并判断该数列是否为等差比数列;(2)若数列为等差数列,试判断是否一定为等差比数列,并说明理由;(3)若数列为等差比数列,定义中常数,数列的前项和为, 求证:.
已知数列{an}满足a1=1,an>0,Sn是数列{an}的前n项和,对任意的 n∈N*,有2Sn=2an2+an-1. (1)求数列{an}的通项公式; (2)记,求数列{bn}的前n项和Tn.
已知函数. (1)求函数的定义域; (2)若不等式有解,求实数的取值范围.
已知,, 且. (1)求函数的周期; (2)当时, 的最小值是-4 , 求此时函数的最大值, 及相应的的值.
已知数列的前项和. (1)求数列的通项公式; (2)若数是等比数列,公比为且,求数列的前n项和.
(本小题满分10分)选修4-5:不等式选讲 设函数. (1)解不等式; (2)若对一切实数均成立,求的取值范围.