如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=900。求证:(1)PC⊥BC;(2)求点A到平面PBC的距离。
(本小题满分为14分)已知函数,点分别是函数图象上的最高点和最低点.(1)求点的坐标以及的值;(2)设点分别在角的终边上,求的值.
(本小题满分为14分)已知定义域为R的函数是奇函数.(1)求a,b的值;(2)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范围.
(本小题满分为10分)设数列的前项和为,已知(,为常数),,.(1)求数列的通项公式;(2)求所有满足等式成立的正整数,.
(本小题满分为10分)如图,将长为4,宽为1的长方形折叠成长方体ABCD-A1B1C1D1的四个侧面,记底面上一边,连接A1B,A1C,A1D.(1)当长方体ABCD-A1B1C1D1的体积最大时,求二面角B-A1C-D的值;(2)线段A1C上是否存在一点P,使得A1C平面BPD,若有,求出P点的位置,没有请说明理由.
平面直角坐标系中,直线的参数方程是,以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,已知曲线C的极坐标方程为(1)求直线的极坐标方程(2)若直线与曲线C相交于A,B两点,求|AB|