用分析法证明:
如图,已知椭圆(a>b>0)的离心率,过点A(0,-b)和B(a,0)的直线与原点的距离为. (1)求椭圆的方程. (2)已知定点E(-1,0),若直线y=kx+2(k≠0)与椭圆交于C、D两点.问:是否存在k的值,使以CD为直径的圆过E点?请说明理由.
抛物线的顶点在原点,它的准线过双曲线的一个焦点,并于双曲线的实轴垂直,已知抛物线与双曲线的交点为,求抛物线的方程和双曲线的方程。
F1,F2为双曲线的焦点,过作垂直于轴的直线交双曲线与点P且∠P F1F2=300,求双曲线的渐近线方程.
椭圆短轴的一个端点与两个焦点组成一个正三角形,焦点到椭圆长轴端点的最短距离为,求此椭圆的标准方程。
在中,分别为内角的对边,且 (1)求的大小; (2)若,试判断的形状.