在三棱柱中,已知,在在底面的投影是线段的中点。(1)求点C到平面的距离;(2)求二面角的余弦值;(3)若M,N分别为直线上动点,求MN的最小值。
已知.
(数列首项,前项和与之间满足.⑴求证:数列是等差数列;⑵求数列的通项公式;⑶设存在正数,使对都成立,求的最大值.
在四棱锥P—ABCD中,底面ABCD是a的正方形,PA⊥平面ABCD,且PA=2AB(1)求证:平面PAC⊥平面PBD;(2)求二面角B—PC—D的余弦值.
(.如图所示,已知四棱锥P—ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E,F分别是BC,PC的中点.(1)证明:AE⊥PD;(2)若H为PD上的动点,EH与平面PAD所成最大角的正切值为,求二面角E—AF—C的余弦值.
(如图所示,在四棱锥P—ABCD中,底面为直角梯形,AD∥BC,∠BAD=90°,PA⊥底面ABCD,且PA=AD=AB=2BC,M、N分别为PC、PB的中点.(1)求证:PB⊥DM;(2)求BD与平面ADMN所成的角.