在三棱柱中,已知,在在底面的投影是线段的中点。(1)求点C到平面的距离;(2)求二面角的余弦值;(3)若M,N分别为直线上动点,求MN的最小值。
(本小题共13分)已知正方形ABCD的边长为1,.将正方形ABCD沿对角线折起,使,得到三棱锥A—BCD,如图所示.(I)若点M是棱AB的中点,求证:OM∥平面ACD;(II)求证:;(III)求二面角的余弦值.
(本小题共13分)在中,角A、B、C的对边分别为、、,角A、B、C成等差数列,,边的长为.(I)求边的长;(II)求的面积.
已知定义在实数集上的函数,,其导函数记为,且满足:,为常数.(Ⅰ)试求的值;(Ⅱ)设函数与的乘积为函数,求的极大值与极小值;(Ⅲ)试讨论关于的方程在区间上的实数根的个数.
设MN是双曲线的弦,且MN与轴垂直,、是双曲线的左、右顶点.(Ⅰ)求直线和的交点的轨迹C的方程;(Ⅱ)设直线y=x-1与轨迹C交于A、B两点,若轨迹C上的点P满足( 为坐标原点,,)求证:为定值,并求出这个定值.
如图,在矩形中,是的中点,以为折痕将向上折起,使为,且平面平面.(Ⅰ)求证:;(Ⅱ)求直线与平面所成角的正弦值.