如图,在梯形ABCD中,AB∥CD,∠A=90°,CD=4,AB=10,.求BC的长.
如图1,抛物线 y = a x 2 + bx + 3 ( a ≠ 0 ) 与 x 轴的交点 A ( - 3 , 0 ) 和 B ( 1 , 0 ) ,与 y 轴交于点 C ,顶点为 D .
(1)求该抛物线的解析式;
(2)连接 AD , DC , CB ,将 ΔOBC 沿 x 轴以每秒1个单位长度的速度向左平移,得到△ O ' B ' C ' ,点 O 、 B 、 C 的对应点分别为点 O ' 、 B ' 、 C ' ,设平移时间为 t 秒,当点 O ' 与点 A 重合时停止移动.记△ O ' B ' C ' 与四边形 AOCD 重合部分的面积为 S ,请直接写出 S 与 t 之间的函数关系式;
(3)如图2,过该抛物线上任意一点 M ( m , n ) 向直线 l : y = 9 2 作垂线,垂足为 E ,试问在该抛物线的对称轴上是否存在一点 F ,使得 ME - MF = 1 4 ?若存在,请求出 F 的坐标;若不存在,请说明理由.
背景:一次小组合作探究课上,小明将两个正方形按如图所示的位置摆放(点 E 、 A 、 D 在同一条直线上),发现 BE = DG 且 BE ⊥ DG .
小组讨论后,提出了下列三个问题,请你帮助解答:
(1)将正方形 AEFG 绕点 A 按逆时针方向旋转(如图 1 ) ,还能得到 BE = DG 吗?若能,请给出证明;若不能,请说明理由;
(2)把背景中的正方形分别改成菱形 AEFG 和菱形 ABCD ,将菱形 AEFG 绕点 A 按顺时针方向旋转(如图 2 ) ,试问当 ∠ EAG 与 ∠ BAD 的大小满足怎样的关系时,背景中的结论 BE = DG 仍成立?请说明理由;
(3)把背景中的正方形分别改写成矩形 AEFG 和矩形 ABCD ,且 AE AG = AB AD = 2 3 , AE = 4 , AB = 8 ,将矩形 AEFG 绕点 A 按顺时针方向旋转(如图 3 ) ,连接 DE , BG .小组发现:在旋转过程中, D E 2 + B G 2 的值是定值,请求出这个定值.
端午节前夕,某商铺用620元购进50个肉粽和30个蜜枣粽,肉粽的进货单价比蜜枣粽的进货单价多6元.
(1)肉粽和蜜枣粽的进货单价分别是多少元?
(2)由于粽子畅销,商铺决定再购进这两种粽子共300个,其中肉粽数量不多于蜜枣粽数量的2倍,且每种粽子的进货单价保持不变,若肉粽的销售单价为14元,蜜枣粽的销售单价为6元,试问第二批购进肉粽多少个时,全部售完后,第二批粽子获得利润最大?第二批粽子的最大利润是多少元?
如图, AB 为 ⊙ O 的直径,点 C 在 ⊙ O 上, AD 与过点 C 的切线互相垂直,垂足为 D .连接 BC 并延长,交 AD 的延长线于点 E .
(1)求证: AE = AB ;
(2)若 AB = 10 , BC = 6 ,求 CD 的长.
以人工智能、大数据、物联网为基础的技术创新促进了新业态蓬勃发展,新业态发展对人才的需求更加旺盛.某大型科技公司上半年新招聘软件、硬件、总线、测试四类专业的毕业生,现随机调查了 m 名新聘毕业生的专业情况,并将调查结果绘制成如图两幅不完整的统计图.
请根据统计图提供的信息,解答下列问题.
(1) m = , n = .
(2)请补全条形统计图;
(3)在扇形统计图中,"软件"所对应的扇形的圆心角是 度;
(4)若该公司新招聘600名毕业生,请你估计"总线"专业的毕业生有 名.