如图一,△ABC是正三角形,△ABD是等腰直角三角形,AB=BD=2。将△ABD沿边AB折起, 使得△ABD与△ABC成30o的二面角,如图二,在二面角中.(1) 求D、C之间的距离; (2) 求CD与面ABC所成的角的大小;(3) 求证:对于AD上任意点H,CH不与面ABD垂直。
(本小题满分13分) 已知函数,,. (Ⅰ)求常数的值;(Ⅱ)求函数的最小正周期和最大值.
设椭圆的焦点分别为,直线交轴于点,且. (1)试求椭圆的方程; (2)过分别作互相垂直的两直线与椭圆分别交于D、E、M、N四点(如图所示),试求四边形面积的最大值和最小值.
已知方程有两个不等的负根;方程无实根,若或为真,且为假,求的取值范围。
已知抛物线C:,为抛物线上一点,为关于轴对称的点,为坐标原点. (1)若,求点的坐标; (2)若过满足(1)中的点作直线交抛物线于两点, 且斜率分别为,且,求证:直线过定点,并求出该定点坐标
已知双曲线 (1)求以为中点的弦所在的直线的方程 (2)求过的弦的中点的轨迹方程