甲、乙、丙3人投篮,投进的概率分别是,,. 现3人各投篮1次,求:(Ⅰ)3人都投进的概率(Ⅱ)3人中恰有2人投进的概率
(本小题满分12分)已知椭圆:的左、右焦点分别为离心率,点在且椭圆E上, (Ⅰ)求椭圆的方程; (Ⅱ)设过点且不与坐标轴垂直的直线交椭圆于两点,线段的垂直平分线与轴交于点,求点横坐标的取值范围.(Ⅲ)试用表示的面积,并求面积的最大值
(本小题满分12分)如图,已知平面,平面,△为等边三角形,,为的中点.(1) 求证:平面;(2) 求证:平面平面;(3) 求直线和平面所成角的正弦值.
(本小题满分12分)甲、乙、丙三人分别独立的进行某项技能测试,已知甲能通过测试的概率是,甲、乙、丙三人都能通过测试的概率是,甲、乙、丙三人都不能通过测试的概率是,且乙通过测试的概率比丙大.(Ⅰ)求乙、丙两人各自通过测试的概率分别是多少;(Ⅱ)求测试结束后通过的人数的数学期望.
(本小题满分12分)已知函的部分图象如图所示:(1)求的值;(2)设,当时,求函数的值域.
不等式选讲若函数的最小值为2,求自变量的取值范围