若椭圆的中心在原点,焦点在轴上,短轴的一个端点与左右焦点、组成一个正三角形,焦点到椭圆上的点的最短距离为.(1)求椭圆的方程;(2)过点作直线与椭圆交于、两点,线段的中点为,求直线的斜率的取值范围.
已知锐角中,角所对的边分别为,已知,(Ⅰ)求的值;(Ⅱ)若,,求的值.
命题函数既有极大值又有极小值;命题直线与圆有公共点.若命题“或”为真,且命题“且”为假,试求实数的取值范围.
定义函数为的阶函数.(1)求一阶函数的单调区间;(2)讨论方程的解的个数;(3)求证:.
已知函数.(1)若在区间单调递增,求的最小值;(2)若,对,使成立,求的范围.
如图四棱锥中,底面是平行四边形,平面,垂足为,在上且,,,是的中点,四面体的体积为.(1)求过点P,C,B,G四点的球的表面积;(2)求直线到平面所成角的正弦值;(3)在棱上是否存在一点,使,若存在,确定点的位置,若不存在,说明理由.