已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,右顶点为,设点.(1)求该椭圆的标准方程;(2)若是椭圆上的动点,求线段中点的轨迹方程;(3)过原点的直线交椭圆于点,求面积的最大值。
本小题满分8分) 已知锐角△ABC的三内角所对的边分别为,边a、b是方程x2-2x+2=0的两根,角A、B满足关系2sin(A+B)-=0,求角C的度数,边c的长度及△ABC的面积.
(本小题满分8分) 已知关于的不等式的解集为,求关于的不等式的解集.
已知定义在区间(0,+∞)上的函数f(x)满足-.当x>1时,f(x)<0. (1)求f(1)的值; (2)判断f(x)单调性; (3)若f(3)=-1,解不等式f(x)<2.
已知函数f(x)满足f(x+y)=f(x)·f(y),且f(1)=. (1)当n∈N*时,求f(n)的表达式; (2)当an=n·f(n), n∈N*,求证a1+a2+…+an<2; (3)设bn=.
已知f(x)=-3x2+a(6-a)x+b. 解关于a的不等式f(1)>0; 当不等式f(x)>0的解集为(-1,3)时,求实数a,b的值。