已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,右顶点为,设点.(1)求该椭圆的标准方程;(2)若是椭圆上的动点,求线段中点的轨迹方程;(3)过原点的直线交椭圆于点,求面积的最大值。
求圆心在抛物线x2=4y上,且与直线x+2y+1=0相切的面积最小的圆的方程.
设函数.(1)求函数的图像在点处的切线方程;(2)求的单调区间;(3)若,为整数,且当时,,求的最大值.
已知椭圆的离心率为,短轴一个端点到右焦点的距离为.(1)求椭圆的方程;(2)设不与坐标轴平行的直线与椭圆交于两点,坐标原点到直线的距离为,求面积的最大值.
现有7道题,其中5道甲类题,2道乙类题,张同学从中任取2道题解答.试求:(1)所取的两道题都是甲类题的概率;(2)所取的两道题不是同一类题的概率.
如图,四棱锥P-ABCD的底面是正方形,PA⊥底面ABCD,PA=2,∠PDA=45,点E、F分别为棱AB、PD的中点.(1)求证:AF∥平面PCE;(2)求三棱锥C-BEP的体积.