已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,右顶点为,设点.(1)求该椭圆的标准方程;(2)若是椭圆上的动点,求线段中点的轨迹方程;(3)过原点的直线交椭圆于点,求面积的最大值。
当m为何实数时,复数z=+(m2+3m-10)i;(1)是实数;(2)是虚数;(3)是纯虚数.
抛物线y=ax2+bx在第一象限内与直线x+y=4相切.此抛物线与x轴所围成的图形的面积记为S.求使S达到最大值的a、b值,并求Smax.
已知过函数f(x)=的图象上一点B(1,b)的切线的斜率为-3. (1)求a、b的值; (2)求A的取值范围,使不等式f(x)≤A-1987对于x∈[-1,4]恒成立; 令.是否存在一个实数t,使得当时,g(x)有最大值1?
讨论函数的单调性,并确定它在该区间上的最大值最小值.
设函数 (1)求导数; 并证明有两个不同的极值点; (2)若不等式成立,求的取值范围.