已知某山区小学有100名四年级学生,将全体四年级学生随机按00~99编号,并且按编号顺序平均分成10组.现要从中抽取10名学生,各组内抽取的编号按依次增加10进行系统抽样.(1)若抽出的一个号码为22,则此号码所在的组数是多少?据此写出所有被抽出学生的号码;(2)分别统计这10名学生的数学成绩,获得成绩数据的茎叶图如图4所示,求该样本的方差;(3)在(2)的条件下,从这10名学生中随机抽取两名成绩不低于73分的学生,求被抽取到的两名学生的成绩之和不小于154分的概率.
(本小题满分10分). (1)化简 (2)求函数的最大值及对应的值.
下列各项中,值等于的是
已知等差数列{an}的首项a1=1,公差d>0,且第二项、第五项、第十四项分别是一个等比数列的第二项、第三项、第四项. (1)求数列{an}的通项公式; (2)设bn=(n∈N*),Sn=b1+b2+…+bn,是否存在最大的整数t,使得对任意的n均有Sn>总成立?若存在,求出t;若不存在,请说明理由.
在△ABC中,内角A,B,C所对的边分别为a,b,c,且a+b+c=8. (1)若a=2,b=,求cos C的值; (2)若sin Acos2+sin Bcos2=2sin C,且△ABC的面积S=sin C,求a和b的值.
数列{an}满足a1=1,a2=2,an+2=2an+1-an+2. (1)设bn=an+1-an,证明{bn}是等差数列; (2)求{an}的通项公式.