如图1,在矩形ABCD中,AB=6cm,BC=12cm,点P从点A开始以1cm/s的速度沿AB边向点B运动,点Q从点B以2cm/s的速度沿BC边向点C运动,如果P、Q同时出发,设运动时间为ts,(1)当t=2时,求△PBQ的面积;(2)当t=时,试说明△DPQ是直角三角形;(3)当运动3s时,P点停止运动,Q点以原速立即向B点返回,在返回的过程中,DP是否能平分∠ADQ?若能,求出点Q运动的时间;若不能,请说明理由.
销售甲、乙两种商品所得利润分别为y1(万元)和y2(万元),它们与投入资金u的关系式为y1=,y2=u.如果将3万元资金投入经营甲、乙两种商品,其中对甲商品的投资为x(万元). (1)求经营甲、乙两种商品的总利润y(万元)与x的函数关系式,并直接写出自变量x的取值范围; (2)设=t,试写出y关于t的函数关系式,并求出经营甲、乙两种商品各投入多少万元时使得总利润最大.
如图,已知△ABC内接于⊙O,点D在OC的延长线上,∠ABC=∠CAD. (1)若∠ABC=20°,则∠OCA的度数为; (2)判断直线AD与⊙O的位置关系,并说明理由; (3)若OD⊥AB,BC=5,AB=8,求⊙O的半径.
我们学习过:在平面内,将一个图形绕一个定点沿着某个方向转动一个角度,这样的图形运动叫做旋转,这个定点称为旋转中心,旋转的角度称为旋转角. (1)如图(1),△ABC经过旋转得到△DEF.试用直尺和圆规作出旋转中心 (保留作图痕迹,不写作法) ; (2)如图(2),正方形ABCD中,E、F分别为CD、AD的中点,连接BE、CF,△BCE按逆时针方向旋转后得到△CDF,则旋转中心为(请在图中画出该点,标上字母,并回答),旋转的最小角度为.
某班数学兴趣小组为了测量建筑物AB与CD的高度,他们选取了地面上点E和建筑物CD的顶端点C为观测点,已知在点C处测得点A的仰角为45°;在点E处测得点C的仰角为30°,测得点A的仰角为37°.又测得DE的长度为9米. (1)求建筑物CD的高度; (2)求建筑物AB的高度(参考数据:≈1.73,sin37°≈,cos37°≈,tan37°≈).
如图,等腰梯形ABCD中,AB=CD,AD∥BC,点E、F在BC上,且BE=CF. (1)求证:AE=DF; (2)若AD=EF,试证明四边形AEFD为矩形.