若的积中不含x2与x3项,(1)求p、q的值;(2)求代数式(﹣2p2q)3+(3pq)﹣1+p2010q2012的值.
本题满分9分.九年级数学兴趣小组经过市场调查,得到某种运动服每月的销量与售价的相关信息如下表:
已知该运动服的进价为每件60元,设售价为x元.(1)请用含x的式子表示:①销售该运动服每件的利润是 元;②月销量是 件;(直接填写结果)(2)设销量该运动服的月利润为y元,那么售价为多少时,当月的利润最大,最大利润是多少?
本题满分9分.如图,已知△ABC.按如下步骤作图:①以A为圆心,AB长为半径画弧;②以C为圆心,CB长为半径画弧,两弧相交于点D;③连结BD,与AC交于点E,连结AD,CD.(1)求证:△ABC≌△ADC;(2)若∠BAC=30°,∠BCA=45°,AC=4,求BE的长.
本题满分9分.已知关于x的方程x2 + 2x + a – 2=0.(1)若该方程有两个不相等的实数根,求实数a的取值范围;(2)当该方程的一个根为1时,求a的值及方程的另一根。
本题满分7分.已知a +b=-,求代数式(a-1)2 +b(2a + b)+2a的值.
如图,在平面直角坐标系中,抛物线经过点 A ( 0 , 4 ) , B ( 1 , 0 ) , C ( 5 , 0 ) ,其对称轴与 x 轴交于点 M . (1)求此抛物线的解析式和对称轴; (2)在此抛物线的对称轴上是否存在一点 P ,使 △ P A B 的周长最小?若存在,请求出点 P 的坐标;若不存在,请说明理由; (3)连接AC,在直线 A C 下方的抛物线上,是否存在一点 N ,使 △ N A C 的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由.