已知,点B是轴上的动点,过B作AB的垂线交轴于点Q,若,.(1)求点P的轨迹方程;(2)是否存在定直线,以PM为直径的圆与直线的相交弦长为定值,若存在,求出定直线方程;若不存在,请说明理由。
(本小题满分12分)已知单调递增的等比数列满足:,且是的等差中项. (1)求数列的通项公式; (2)若,,求成立的正整数的最小值.
(本小题满分12分)某学校举行元旦晚会,组委会招募了12名男志愿者和18名 女志愿者,将这30名志愿者的身高编成如图所示的茎叶图(单位:cm),身高在175 cm以上(包括175 cm)定义为“高个子”,身高在175 cm以下(不包括175 cm)定义为“非高个子”. (1)如果用分层抽样的方法从“高个子”和“非高个子”中共抽取5人,再从这5人中选2人,求至少有一人是“高个子”的概率; (2)若从身高180 cm以上(包括180 cm)的志愿者中选出男、女各一人,求这2人身高相差5 cm以上的概率.
(本小题满分12分)在中,角的对边分别是,若. (1)求角的大小; (2)若,的面积为,求的值.
已知函数,,其中且. (1)判断函数的单调性; (2)当时,求函数在区间上的最值; (3)设函数当时,若对于任意的,总存在唯一的,使得成立,试求的取值范围.
已知函数为常数. (1)当时,求的单调区间; (2)当时,若在区间上的最大值为,求的值; (3)当时,试推断方程=是否有实数解.