(本小题满分14分)已知函数,当时,取得极小值.(1)求,的值;(2)设直线,曲线.若直线与曲线同时满足下列两个条件:①直线与曲线相切且至少有两个切点; ②对任意都有.则称直线为曲线的“上夹线”.试证明:直线是曲线的“上夹线”.(3)记,设是方程的实数根,若对于定义域中任意的、,当,且时,问是否存在一个最小的正整数,使得恒成立,若存在请求出的值;若不存在请说明理由.
(本题12分)已知关于的不等式,其中. (Ⅰ)当变化时,试求不等式的解集; (Ⅱ)对于不等式的解集,若满足(其中为整数集). 试探究集合能否为有限集?若能,求出使得集合中元素个数最少的的所有取值,并用列举法表示集合;若不能,请说明理由.
(本题10分)上海“世博会”举办时间为2010年5月1日~10月31日.陕西馆以“人文长安之旅”为主题,以“昔日皇家园林”华清池为原型,塑造“人文陕西、山水秦岭”的新形象.为宣传陕西,要设计如图的一张矩形广告,该广告含有大小相等的左中右三个矩形栏目,这三栏的面积之和为,四周空白的宽度为,栏与栏之间的中缝空白的宽度为,怎样确定广告矩形栏目高与宽的尺寸(单位:),能使整个矩形广告面积最小.
(本题10分)已知,求证:
(本题8分)解不等式
(本小题满分12分) 道路交通安全法中将饮酒后违法驾驶机动车的行为分成两个档次:“酒后驾车”和“醉酒驾车”,其检测标准是驾驶人员血液中的酒精含量Q(简称血酒含量,单位是毫克/100毫升),当20≤Q<80时,为酒后驾车;当Q≥80时,为醉酒驾车. 某市公安局交通管理部门在某路段的一次拦查行动中,依法检查了200辆机动车驾驶员的血酒含量,其中查处酒后驾车的有6人,查处醉酒驾车的有2人,依据上述材料回答下列问题: (1)分别写出违法驾车发生的频率和醉酒驾车占违法驾车总数的百分数; (2)从违法驾车的8人中抽取2人,求取到醉酒驾车人数的分布列和期望,并指出所求期望的实际意义; (3)饮酒后违法驾驶机动车极易发生交通事故,假设酒后驾车和醉酒驾车发生交通事故的概率分别是0.1和0.25,且每位驾驶员是否发生交通事故是相互独立的。依此计算被查处的8名驾驶员中至少有一人发生交通事故的概率。(精确到0.01)并针对你的计算结果对驾驶员发出一句话的倡议.