【选修4—4:坐标系与参数方程】已知圆的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,圆的极坐标方程为.(I)将圆的参数方程化为普通方程,将圆的极坐标方程化为直角坐标方程;(II)圆、是否相交,若相交,请求出公共弦的长;若不相交,请说明理由.
用四种不同的颜色给3个不同矩形随机涂色,每个矩形只涂一种颜色. 求:(1)3个矩形颜色都相同的概率; (2)3个矩形颜色都不同的概率; (3)3个矩形有两个颜色相同的概率
如图,边长为2的等边所在的平面垂直于矩形所在的平面,,为的中点. (1)证明:; (2)求异面直线和所成角的余弦值.
设实数满足. (1)求;(2)求展开式中含项的系数
已知椭圆中心在原点,焦点在坐标轴上,直线与椭圆在第一象限内的交点是,点在轴上的射影恰好是椭圆的右焦点,椭圆另一个焦点是,且 (1)求椭圆的方程; (2)直线过点,且与椭圆交于两点,求的内切圆面积的最大值
已知函数 (Ⅰ)求函数的单调区间; (Ⅱ)若不等式在区间上恒成立,求实数k的取值范围; (Ⅲ)求证: