如图,在直角坐标系中,半径为1的⊙A圆心与原点O重合,直线l分别交x轴、y轴于点B、C,若点B的坐标为(6,0),tan∠ABC=.(1)若点P是⊙A上的动点,求P到直线BC的最小距离,并求此时点P的坐标;(2)若点A从原点O出发,以1个单位/秒的速度沿着线路OB→BC→CO运动,回到点O停止运动,⊙A随着点A的运动而移动.设点A运动的时间为t.①求⊙A在整个运动过程中与坐标轴相切时t的取值;②求⊙A在整个运动过程中所扫过的图形的面积为 .
(1)点(1,3)沿X轴的正方向平移4个单位得到的点的坐标是_________ (2)直线y=3x沿x轴的正方向平移4个单位得到的直线解析式为____________ (3)若直线l与(2)中所得的直线关于直线x=2对称,试求直线l的解析式.
如图1:直线y= kx+4k(k≠0)交x轴于点A,交y轴于点C,点M(2,m)为直线AC上一点,过点M的直线BD交x轴于点B,交y轴于点D. (1)求的值(用含有k的式子表示.); (2)若SBOM =3SDOM,且k为方程(k+7)(k+5)-(k+6)(k+5=的根,求直线BD的解析式. (3)如图2,在(2)的条件下,P为线段OD之间的动点(点P不与点O和点D重合),OE 上AP于E,,DF上AP于F,下列两个结论:①值不变;②值不变,请你判断其中哪一个结论是正确的,并说明理由并求出其值,
如图1,AD∥BC,AB ⊥BC于B,∠DCB=75°,以CD为边的等边△DCE的另一顶点E在线段AB上. (1)填空:∠ADE=____°; (2)求证: AB=BC; (3)如图2所示,若F为线段CD上一点,∠FBC=30°,求的值.
已知A、B两点在数轴上表示的数为a和b,M、N均为数轴上的点,且OA<OB. (1)若A、B的位置如图l所示,试化简: -++ (2)如图2,若+=8.9,MN=3,求图中以A、N、O、M、B这5个点为端点的所 有线段长度的和; (3)如图3,M为AB中点,N为OA中点,且MN=2AB-15,a=-3,若点P为数轴上一点,且PA=AB,试求点P所对应的数为多少?
已知:0为直线AB上的一点,射线OA表示正北方向,射线OC在北偏东m°的方向,射线OE在南偏东n°的方向,射线OF平分∠AOE,且2m+2n=180. (1)如图1,∠ COE=______°, ∠COF和∠BOE之间的数量关系为________________. (2)若将∠COE绕点O旋转至图2的位置,射线OF仍然平分∠AOE时,试问(1)中∠COF和∠BOE之间的数量关系是否发生变化?若不发生变化,请你加以证明,若发生变化,请你说明理由; (3)若将∠COE绕点0旋转至图3位置,射线OF仍平分∠AOE时,则2 ∠COF+∠BOE= _°.