如图,在直角坐标系中,半径为1的⊙A圆心与原点O重合,直线l分别交x轴、y轴于点B、C,若点B的坐标为(6,0),tan∠ABC=.(1)若点P是⊙A上的动点,求P到直线BC的最小距离,并求此时点P的坐标;(2)若点A从原点O出发,以1个单位/秒的速度沿着线路OB→BC→CO运动,回到点O停止运动,⊙A随着点A的运动而移动.设点A运动的时间为t.①求⊙A在整个运动过程中与坐标轴相切时t的取值;②求⊙A在整个运动过程中所扫过的图形的面积为 .
(本小题满分共8分) 某校政教处倡导“光盘行动”,让同学们珍惜粮食,但发现还是有少数同学们就餐时剩余饭菜较多,为了让同学们理解这次活动的重要性,政教处在某天午餐中,分别按照七、八、九三个年级总人数的同样比例随机调查了三个年级部分同学这餐饭菜的剩余情况,分为三类:A(没有剩余)、B(有少量剩余)、C(剩余一半及以上),并将结果统计后绘制成了如图所示的不完整的统计图. (1)这次被调查的同学共有 名; (2)八年级被调查的学生共有 名; (3)通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供8人用一餐.据此估算,该校1000名学生这餐饭菜没有浪费的学生有多少人?这餐浪费的食物可供多少人食用一餐?
(本小题满分6分)如图,已知点A、B、C、D在一条直线上,BF、CE相交于O,AE=DF,∠E=∠F,OB=OC. (1)求证:△ACE≌△DBF; (2)如果把△DBF沿AD折翻折使点F落在点G,连接BE和CG,求证:四边形BGCE是平行四边形.
(本小题满分10分) (1) 解方程:=+2; (2) 解不等式组:.
(本小题满分8分) (1) 计算:-2-(π-2015)0-cos60°; (2) 化简:.
如图,已知二次函数y=ax2+bx+8(a≠0)的图象与x轴交于点A(﹣2,0),B,与y轴交于点C,tan∠ABC=2. (1)求抛物线的解析式及其顶点D的坐标; (2)设直线CD交x轴于点E.在线段OB的垂直平分线上是否存在点P,使得经过点P的直线PM垂直于直线CD,且与直线OP的夹角为75°?若存在,求出点P的坐标;若不存在,请说明理由; (3)过点B作x轴的垂线,交直线CD于点F,将抛物线沿其对称轴向上平移,使抛物线与线段EF总有公共点.试探究:抛物线最多可以向上平移多少个单位长度?