如图,已知抛物线经过,两点,顶点为.(1)求抛物线的解析式;(2)将绕点顺时针旋转90°后,点落到点的位置,将抛物线沿轴平移后经过点,求平移后所得图象的函数关系式;(3)设(2)中平移后,所得抛物线与轴的交点为,顶点为,若点在平移后的抛物线上,且满足的面积是面积的2倍,求点的坐标.
(1)解不等式:(2)解方程:
计算: (1)(2)
如图,二次函数与x轴交于A、B两点,与y轴交于C点,点P从A点出发,以1个单位每秒的速度向点B运动,点Q同时从C点出发,以相同的速度向y轴正方向运动,运动时间为t秒,点P到达B点时,点Q同时停止运动。设PQ交直线AC于点G。 (1)求直线AC的解析式; (2)设△PQC的面积为S,求S关于t的函数解析式; (3)在y轴上找一点M,使△MAC和△MBC都是等 腰三角形。直接写出所有满足条件的M点的坐标; (4)过点P作PE⊥AC,垂足为E,当P点运动时, 线段EG的长度是否发生改变,请说明理由。
(本小题满分8分)如图,抛物线交x轴于A、B两点,顶点为C,经过A、B、C三点的圆的圆心为M. ⑴ 求圆心M的坐标; ⑵ 求⊙M上劣弧AB的长; ⑶ 在抛物线上是否存在一点D,使线段OC和MD互相平分?若存在,直接写出点D的坐标,若不存在,请说明理由.
(本小题满分8分) 为创建丹阳生态城市,实现城市生活垃圾减量化、资源化、无害化的目标,我市决定在全市部分社区试点实施生活垃圾分类处理. 某街道计划建造垃圾初级处理点20个,解决垃圾投放问题. 有A、B两种类型处理点的占地面积、可供使用居民楼幢数及造价见下表:
已知可供建造垃圾初级处理点占地面积不超过370m2,该街道共有490幢居民楼. (1)满足条件的建造方案共有几种?写出解答过程. (2)通过计算判断,哪种建造方案最省钱,最少需要多少万元.