已知椭圆C: (a>b>0)的两个焦点和短轴的两个端点都在圆上.(I)求椭圆C的方程;(II)若斜率为k的直线过点M(2,0),且与椭圆C相交于A, B两点.试探讨k为何值时,三角形OAB为直角三角形.
电视传媒为了解某市100万观众对足球节目的收视情况,随机抽取了100名观众进行调查.如图是根据调查结果绘制的观众每周平均收看足球节目时间的频率分布直方图,将每周平均收看足球节目时间不低于1.5小时的观众称为“足球迷”,并将其中每周平均收看足球节目时间不低于2.5小时的观众称为“铁杆足球迷”.(1)试估算该市“足球迷”的人数,并指出其中“铁杆足球迷”约为多少人;(2)该市要举办一场足球比赛,已知该市的足球场可容纳10万名观众.根据调查,如果票价定为100元/张,则非“足球迷”均不会到现场观看,而“足球迷”均愿意前往现场观看.如果票价提高元/张,则“足球迷”中非“铁杆足球迷”愿意前往观看的人数会减少,“铁杆足球迷”愿意前往观看的人数会减少.问票价至少定为多少元/张时,才能使前往现场观看足球比赛的人数不超过10万人?
已知函数.(1)讨论函数的奇偶性;(2)若函数在上为减函数,求的取值范围.
如图,直三棱柱的底面是等腰直角三角形,,侧棱底面,且,是的中点,是上的点.(1)求异面直线与所成角的大小(结果用反三角函数表示);(2)若,求线段的长.
已知函数,.(1)讨论在内和在内的零点情况.(2)设是在内的一个零点,求在上的最值.(3)证明对恒有.[来
椭圆:的左顶点为,直线交椭圆于两点(上下),动点和定点都在椭圆上.(1)求椭圆方程及四边形的面积.(2)若四边形为梯形,求点的坐标.(3)若为实数,,求的最大值.