以下是某地搜集到的新房屋的销售价格和房屋的面积的数据:
(1)画出数据对应的散点图;(2)求线性回归方程;(3)据(2)的结果估计当房屋面积为时的销售价格.(提示:, ,, )
(本小题满分10分) 如图,在棱长为3的正方体中,. ⑴求两条异面直线与所成角的余弦值; ⑵求平面与平面所成的锐二面角的余弦值.
定义在上的函数,,当时,.且对任意的有。 (1)证明:; (2)证明:对任意的,恒有; (3)证明:是上的增函数; (4)若,求的取值范围。
已知函数,且 (1)求; (2)判断的奇偶性; (3)试判断在上的单调性,并证明。
已知满足,求函数的最大值和最小值
某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数:,其中是仪器的月产量 (1)将利润表示为月产量的函数 (2)当月产量为何值时,公司所获利润最大?最大利润是多少元?(总收益=总成本+利润)