(本小题14分)已知四面体中,,平面平面,分别为棱和的中点。(1)求证:平面;(2)求证:;(3)若内的点满足∥平面,设点构成集合,试描述点集的位置(不必说明理由)
已知关于的不等式. (Ⅰ)若不等式的解集为,求的值. (Ⅱ)求不等式的解集.
某学校一个生物兴趣小组对学校的人工湖中养殖的某种鱼类进行观测研究,在饲料充足的前提下,兴趣小组对饲养时间x(单位:月)与这种鱼类的平均体重y(单位:千克)得到一组观测值,如下表:
(1)在给出的坐标系中,画出关于x、y两个相关变量的散点图. (2)请根据上表提供的数据,用最小二乘法求出变量关于变量的线性回归直线方程. (3)预测饲养满12个月时,这种鱼的平均体重(单位:千克). (参考公式:,,,,,
设的内角所对的边分别为且. (Ⅰ)求角的大小; (Ⅱ)若,求的周长的取值范围.
已知公差不为零的等差数列中,,且成等比数列. (Ⅰ)求数列的通项公式; (Ⅱ)令(),求数列的前项和.
已知函数的最小正周期为. (Ⅰ)求函数的表达式并求在区间上的最小值; (Ⅱ)在中,分别为角所对的边,且,,求角的大小.