已知向量m=(cos,1),n=(sin,cos2).(1)若=1,求的值;(2)记f(x)=,在△ABC中,角A、B、C的对边分别是a、b、c,且满足(2a-c)cosB=bcosC,求函数f(A)的取值范围.
一质点运动的方程为s=8-3t2.(1)求质点在[1,1+△t]这段时间内的平均速度;(2)用定义法求质点在t=1时的瞬时速度.
已知单调递增的等比数列满足:,且是,的等差中项.(1)求数列的通项公式;(2)若,,求.
已知函数的图象经过点,曲线在点处的切线恰好与直线垂直.(1)求实数的值;(2)若函数在区间上单调递增,求的取值范围.
如图,在四棱锥中,平面,底面是菱形,,,为与的交点,为棱上一点.(Ⅰ)证明:平面⊥平面;(Ⅱ)若平面,求三棱锥的体积.
数列{}的前项和为,是和的等差中项,等差数列{}满足,.(1)求数列,的通项公式;(2)若,求数列的前项和.