(本题满分12分)定义在上的函数满足:①对任意都有;② 在上是单调递增函数;③.(Ⅰ)求的值;(Ⅱ)证明为奇函数;(Ⅲ)解不等式.
求过直线与已知圆的交点,且在两坐标轴上的四个截距之和为的圆的方程.
已知方程表示一个圆. (1)求的取值范围; (2)求该圆半径的取值范围.
已知点,在坐标轴上求一点,使直线的倾斜角为.
已知直线在轴上的截距为,直线上横坐标分别为的两点的线段长为,求直线的方程.
求与圆外切,且与直线相切于点的圆的方程.