设数列是有穷等差数列,给出下面数表: …… 第1行 …… 第2行 … … … … … … 第n行上表共有行,其中第1行的个数为,从第二行起,每行中的每一个数都等于它肩上两数之和.记表中各行的数的平均数(按自上而下的顺序)分别为.(1)求证:数列成等比数列;(2)若,求和.
如图,在棱长为1的正方体中,、分别为和的中点. (1)求异面直线和所成的角的余弦值; (2)求平面与平面所成的锐二面角的余弦值; (3)若点在正方形内部或其边界上,且平面,求的最大值、最小值.
已知等式, 其中ai(i=0,1,2,…,10)为实常数. 求:(1)的值;(2)的值.
是否存在自然数,使得对任意自然数,都能被整除,若存在,求出的最大值,并证明你的结论;若不存在,说明理由.
已知矩阵,向量. (1)求矩阵的特征值、和特征向量、; (2)求的值.
(本小题满分16分:4+5+7) 已知函数,其中e为常数, (e=2.71828...), (1)当a=1时,求的单调区间与极值; (2)求证:在(1)的条件下, (3)是否存在实数,使最小值为3,若存在,求出的值,若不存在,说明理由。