设A(xA,yA),B(xB,yB)为平面直角坐标系上的两点,其中xA,yA,xB,yBÎZ.令△x=xB-xA,△y=yB-yA,若|△x|+|△y|=3,且|△x|·|△y|≠0,则称点B为点A的“相关点”,记作:B=f(A).
(1)请问:点(0,0)的“相关点”有几个?判断这些点是否在同一个圆上,若在,写出圆的方程;若不在,说明理由;
(2)已知点H(9,3),L(5,3),若点M满足M=f(H),L=f(M),求点M的坐标;
(3)已知P0(x0,y0)(x0ÎZ,y0ÎZ)为一个定点, 若点Pi满足Pi=f (Pi-1),其中i=1,2,3,···,n,求|P0Pn|的最小值.