(本小题15分)已知动圆被y轴所截的弦长为2,被x轴分成两段弧,且弧长之比等于(其中为圆心,O为坐标原点)。(1)求a,b所满足的关系式;(2)点P在直线上的投影为A,求事件“在圆P内随机地投入一点,使这一点恰好在内”的概率的最大值
(本小题满分10分)已知曲线C1的极坐标方程为,倾斜角为直线经过定点,直线与曲线C1相交于A,B两点。(1)求曲线的直角坐标方程、直线的参数方程;(2)求.
(本小题满分10分)如图,四边形ABCD内接于⊙,是⊙的直径,于点,平分.(1)证明:是⊙的切线(2)如果,求.
(本小题满分12分)已知函数的图象在点处的切线的斜率为2. (1)求实数的值, (2)设,讨论的单调性; (3)已知且,证明:。
(本小题满分12分)在平面直角坐标系中,椭圆C:的离心率为,直线被椭圆截得的线段长为.(1)求椭圆的方程;(2)设动直线与曲线交于A,B两点,问在y轴上是否存在定点,使∠AGB为直角?若存在,求出的坐标,并求△AGB面积的最大值;若不存在,请说明理由.
(本小题满分12分)已知四棱锥,在四边形中,,,平面底面,(1)求证:平面;(2)在线段上是否存在点,使直线与平面所成的角为?若存在,求出的长,若不存在,请说明理由.