已知二次函数的图象与x 轴交于(2,0)、(4,0),顶点到x 轴的距离为3,求函数的解析式。
先化简(),然后从范围内选取一个合适的整数作为的值代入求值.
已知:如图1,抛物线的顶点为M,平行于x轴的直线与该抛物线交于点A,B(点A在点B左侧),根据对称性△AMB恒为等腰三角形,我们规定:当△AMB为直角三角形时,就称△AMB为该抛物线的“完美三角形”.(1)①如图2,求出抛物线的“完美三角形”斜边AB的长;②抛物线与的“完美三角形”的斜边长的数量关系是 ;(2)若抛物线的“完美三角形”的斜边长为4,求a的值;(3)若抛物线的“完美三角形”斜边长为n,且的最大值为-1,求m,n的值.
如图,△ABC中,AB=AC,点P是三角形右外一点,且∠APB=∠ABC.(1)如图1,若∠BAC=60°,点P恰巧在∠ABC的平分线上,PA=2,求PB的长;(2)如图2,若∠BAC=60°,探究PA,PB,PC的数量关系,并证明;(3)如图3,若∠BAC=120°,请直接写出PA,PB,PC的数量关系.
如图,矩形OABC的顶点A、C分别在x轴和y轴上,点B的坐标为(2,3),双曲线的图像经过BC的中点D,且与AB交于点E,连接DE。若点F是边上一点,且△FBC∽△DEB,求直线FB的解析式.
如图,已知⊙O的直径AB与弦CD互相垂直,垂足为点E.⊙O的切线BF与弦AC的延长线相交于点F,且AC=8,tan∠BDC=.求线段CF的长.