(本小题满分12分)求函数的最小正周期和最小值;并写出该函数在上的单调递增区间.
如图,点为圆形纸片内不同于圆心的定点,动点在圆周上,将纸片折起,使点与点重合,设折痕交线段于点.现将圆形纸片放在平面直角坐标系中,设圆:,记点的轨迹为曲线. ⑴证明曲线是椭圆,并写出当时该椭圆的标准方程; ⑵设直线过点和椭圆的上顶点,点关于直线的对称点为点,若椭圆的离心率,求点的纵坐标的取值范围.
某地建一座桥,两端的桥墩已建好,这两墩相距米,余下工程只需要建两端桥墩之间的桥面和桥墩,经预测,建一个桥墩的工程费用为256万元,距离为米的相邻两桥墩之间的桥面工程费用为万元。假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,记余下工程的费用为万元。 (1)试写出关于的函数关系式; (2)当=640米时,需新建多少个桥墩才能使最小?
如图,在直三棱柱中,,分别是的中点,且. (1)求证:; (2)求证:平面平面.
设函数. (1)求的最小正周期. (2)若函数与的图像关于直线对称,求当时的最大值.
设数列的前n项和为, (1)求证:数列是等比数列; (2)若,是否存在q的某些取值,使数列中某一项能表示为另外三项之和?若能求出q的全部取值集合,若不能说明理由。 (3)若,是否存在,使数列中,某一项可以表示为另外三项之和?若存在指出q的一个取值,若不存在,说明理由。