某工厂有214名工人, 现要生产1500件产品, 每件产品由3个A型零件与1个B型零件配套组成, 每个工人加工5个A型零件与3个B型零件所需时间相同. 现将全部工人分为两组, 分别加工一种零件, 同时开始加工. 设加工A型零件的工人有x人, 在单位时间内每人加工A型零件5k个(k∈N*), 加工完A型零件所需时间为g(x), 加工完B型零件所需时间为h (x). (Ⅰ) 试比较与大小, 并写出完成总任务的时间的表达式;(Ⅱ) 怎样分组才能使完成任务所需时间最少?
如图,正四棱柱中,,点在上且. (1)证明:平面; (2)求二面角的余弦值大小.
如图,在五面体ABCDEF中,FA 平面ABCD, AD//BC//FE,ABAD,M为EC的中点,AF=AB=BC=FE=AD (1)求异面直线BF与DE所成的角的大小; (2)证明平面AMD平面CDE; (3)求二面角A-CD-E的余弦值.
如图,在四棱锥P-ABCD中,底面为直角梯形,AD∥BC,∠BAD=90°,PA⊥底面ABCD,且PA=AD=AB=2BC,M、N分别为PC、PB的中点. (1)求证:PB⊥DM; (2)求CD与平面ADMN所成角的正弦值.
如图,在四棱锥中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD的中点 求证:(1)直线EF//平面PCD;(2)平面BEF⊥平面PAD
已知椭圆G:+y2=1.过点(m,0)作圆x2+y2=1的切线l交椭圆G于A,B两点. (1)求椭圆G的焦点坐标和离心率; (2)将|AB|表示为m的函数,并求|AB|的最大值.