已知圆C经过点A(-2,0),B(0,2),且圆心C在直线y=x上,又直线l:y=kx+1与圆C相交于P、Q两点.(1)求圆C的方程;(2)过点(0,1)作直线l1与l垂直,且直线l1与圆C交于M、N两点,求四边形PMQN面积的最大值.
定义在上的函数是减函数,求满足不等式 的的集合.
中,,,、分别是、上的动点,且满足,若,, (1)写出的取值范围, (2)求的解析式.
设平面内有,且表示这个平面内的动点,指出属于集合的点是什么.
已知点,是平面内一动点,直线、斜率之积为。 (Ⅰ)求动点的轨迹的方程; (Ⅱ)过点作直线与轨迹交于两点,线段的中点为,求直线的斜率的取值范围。
在中,为锐角,角所对的边分别为,且,。 (Ⅰ)求的值; (Ⅱ)若,求的值。