(本小题满分12分)如图,边长为a的正方体ABCD-A1B1C1D1中,E为CC1的中点.(1)求直线A1E与平面BDD1B1所成的角的正弦值(2)求点E到平面A1DB的距离
设函数 f ( x ) = a x 2 + b x + k ( k > 0 ) 在 x = 0 处取得极值,且曲线 y = f ( x ) 在点 ( 1 , f ( 1 ) ) 处的切线垂直于直线 x + 2 y + 1 = 0 . (1)求 a , b 的值;
(2)若函数 g ( x ) = e x f ( x ) ,讨论 g ( x ) 的单调性。
设函数 f x = x 2 + a ln 1 + x 有两个极值点 x 1 , x 2 ,且 x 1 < x 2
(I)求 a 的取值范围,并讨论 f x 的单调性; (II)证明: f x 2 > 1 - 2 ln 2 4 .
某车间甲组有10名工人,其中有4名女工人;乙组有5名工人,其中有3名女工人,现采用分层抽样方法(层内采用不放回简单随机抽样)从甲、乙两组中共抽取3名工人进行技术考核. (I)求从甲、乙两组各抽取的人数; (II)求从甲组抽取的工人中恰有1名女工人的概率; (III)记 ξ 表示抽取的3名工人中男工人数,求 ξ = C 6 1 C 4 1 C 10 2 = 8 15 的分布列及数学期望.
设数列 a n 的前 n 项和为 S n 已知 a 1 = 1 , S n + 1 = 4 a n + 2
(I)设 b n = a n + 1 - 2 a n ,证明数列 b n 是等比数列. (II)求数列 a n 的通项公式.
已知函数 f ( x ) = sin 2 ω x + 3 sin ω x sin ( ω x + π 2 ) ( ω > 0 ) 的最小正周期为 π . (1)求 ω 的值;
(2)求函数 f ( x ) 在区间 [ 0 , 2 3 π ] 上的取值范围.