(本小题满分12分)已知向量=(,),=(,-),且.(Ⅰ)用cosx表示·及|+|;(Ⅱ)求函数f(x)=·+2|+|的最小值.
如图,直四棱柱ABCD—A1B1C1D1的高为3,底面是边长为4且∠DAB=60°的菱形,AC∩BD=0,A1C1∩B1D1=O1,E是O1A的中点.(1)求证:平面O1AC平面O1BD(2)求二面角O1-BC-D的大小;(3)求点E到平面O1BC的距离.
计算并输出1×2×3×4×﹣﹣﹣×n>1000的最小整数n,写出程序框图,并编写程序。
某学校随机抽取部分新生调查其上学所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学所需时间的范围是,样本数据分组为,,,,.(Ⅰ)求直方图中的值;(Ⅱ)如果上学所需时间不少于1小时的学生可申请在学校住宿,请估计学校600名新生中有多少名学生可以申请住宿;
已知,,其中 (1)求证: 与互相垂直;(2)若与的长度相等,求的值(为非零的常数) .
(1)若函数,则_______________.(2)化简:=____________.