某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数: ,其中是仪器的月产量(1)将利润表示为月产量的函数(2)当月产量为何值时,公司所获利润最大?最大利润是多少元?(总收益=总成本+利润)
(本小题满分12分)为了了解中学生的体能状况,某校抽取了n名高一学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图),图中第二小组频数为7.(1)求频率分布直方图中a的值及抽取的学生人数n;(2)现从跳绳次数在[179.5,199.5]内的学生中随机选取2人,求至少有一人跳绳次数在[189.5,199.5]之间的概率。
(本小题满分12分)在△ABC中,角A,B,C的对边分别为a,b,c,已知,A=,.(1)求B,C的值;(2)求的面积.
(本小题满分一10分)【选修4一5:不等式选讲】已知(1)求不等式的解集;(2)设m,n,p为正实数,且,求证:.
(本小题满分10分)【选修4一4:坐标系与参数方程】已知在直角坐标系x0y中,曲线:(为参数),在以平面直角坐标系的原点)为极点,x轴的正半轴为极轴,取相同单位长度的极坐标系中,曲线:.(1)求曲线的普通方程和曲线的直角坐标方程;(2)曲线上恰好存在三个不同的点到曲线的距离相等,分别求这三个点的极坐标.
(本小题满分10分)【选修4一1:几何证明选讲】如图,已知AB是圆O的一条弦,延长AB到点C使,过点B作且,连接DA与圆O交于点E,连接CE与圆O交于点F.(1)求证:;(2)若,,求BE.