(本小题满分12分)为了了解中学生的体能状况,某校抽取了n名高一学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图),图中第二小组频数为7.(1)求频率分布直方图中a的值及抽取的学生人数n;(2)现从跳绳次数在[179.5,199.5]内的学生中随机选取2人,求至少有一人跳绳次数在[189.5,199.5]之间的概率。
已知复数Z=a+bi(a,b εR),且—(i—1)a+3b+2i=0 (I)求复数Z (II)若Z+εR,求实数m的值.
如图,在五面体中,四边形是正方形,平面∥ (1)求异面直线与所成角的余弦值; (2)证明:平面; (3)求二面角的正切值。
已知以点为圆心的圆与轴交于点,与轴交于点,其中为坐标原点。 (1)求证:的面积为定值; (2)设直线与圆交于点,若,求圆的方程。
如图,边长为2的正方形中, (1)点是的中点,点是的中点,将分别沿折起,使两点重合于点。求证: (2)当时,求三棱锥的体积。
已知的顶点的坐标为,边上的中线所在直线方程为的平分线所在直线方程为,求边所在直线的方程。