如图,△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=2,DC=3,求AD的长。小萍同学灵活运用了轴对称知识,将图形进行翻折变换,巧妙地解答了此题。(1)分别以AB、AC为对称轴,画出△ABD、△ACD的轴对称图形,D、C点的对称点分别为E、F,延长EB、FC相交于G点,求证:四边形AEGF是正方形;(2)设AD=x,利用勾股定理,建立关于x的方程模型,求出x的值。
如图,矩形中,为上一点,于.若,求:的长,以及四边形DCEF的面积。
在4×4的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上。(1)填空:∠ABC=°,BC=(2)判断△ABC与△DEF是否相似,并说明理由.(3)请在图中再画一个和△ABC相似但相似比不为1的格点三角形.
解方程:(4+4=8分)(1) (2)—=8
先化简,再求值:,其中x=-4.
计算:(每个3分,共6分)(1)(2)